Paper ID: 2303.11117

EmotionIC: emotional inertia and contagion-driven dependency modeling for emotion recognition in conversation

Yingjian Liu, Jiang Li, Xiaoping Wang, Zhigang Zeng

Emotion Recognition in Conversation (ERC) has attracted growing attention in recent years as a result of the advancement and implementation of human-computer interface technologies. In this paper, we propose an emotional inertia and contagion-driven dependency modeling approach (EmotionIC) for ERC task. Our EmotionIC consists of three main components, i.e., Identity Masked Multi-Head Attention (IMMHA), Dialogue-based Gated Recurrent Unit (DiaGRU), and Skip-chain Conditional Random Field (SkipCRF). Compared to previous ERC models, EmotionIC can model a conversation more thoroughly at both the feature-extraction and classification levels. The proposed model attempts to integrate the advantages of attention- and recurrence-based methods at the feature-extraction level. Specifically, IMMHA is applied to capture identity-based global contextual dependencies, while DiaGRU is utilized to extract speaker- and temporal-aware local contextual information. At the classification level, SkipCRF can explicitly mine complex emotional flows from higher-order neighboring utterances in the conversation. Experimental results show that our method can significantly outperform the state-of-the-art models on four benchmark datasets. The ablation studies confirm that our modules can effectively model emotional inertia and contagion.

Submitted: Mar 20, 2023