Paper ID: 2303.11695
Transcriptomics-based matching of drugs to diseases with deep learning
Yannis Papanikolaou, Francesco Tuveri, Misa Ogura, Daniel O'Donovan
In this work we present a deep learning approach to conduct hypothesis-free, transcriptomics-based matching of drugs for diseases. Our proposed neural network architecture is trained on approved drug-disease indications, taking as input the relevant disease and drug differential gene expression profiles, and learns to identify novel indications. We assemble an evaluation dataset of disease-drug indications spanning 68 diseases and evaluate in silico our approach against the most widely used transcriptomics-based matching baselines, CMap and the Characteristic Direction. Our results show a more than 200% improvement over both baselines in terms of standard retrieval metrics. We further showcase our model's ability to capture different genes' expressions interactions among drugs and diseases. We provide our trained models, data and code to predict with them at https://github.com/healx/dgem-nn-public.
Submitted: Mar 21, 2023