Paper ID: 2303.11789

Random Inverse Problems Over Graphs: Decentralized Online Learning

Tao Li, Xiwei Zhang

We establish a framework of distributed random inverse problems over network graphs with online measurements, and propose a decentralized online learning algorithm. This unifies the distributed parameter estimation in Hilbert spaces and the least mean square problem in reproducing kernel Hilbert spaces (RKHS-LMS). We transform the convergence of the algorithm into the asymptotic stability of a class of inhomogeneous random difference equations in Hilbert spaces with L2-bounded martingale difference terms and develop the L2 -asymptotic stability theory in Hilbert spaces. It is shown that if the network graph is connected and the sequence of forward operators satisfies the infinite-dimensional spatio-temporal persistence of excitation condition, then the estimates of all nodes are mean square and almost surely strongly consistent. Moreover, we propose a decentralized online learning algorithm in RKHS based on non-stationary and non-independent online data streams, and prove that the algorithm is mean square and almost surely strongly consistent if the operators induced by the random input data satisfy the infinite-dimensional spatio-temporal persistence of excitation condition.

Submitted: Mar 20, 2023