Paper ID: 2303.12823

Data-Driven Leader-following Consensus for Nonlinear Multi-Agent Systems against Composite Attacks: A Twins Layer Approach

Xin Gong, Jintao Peng, Dong Yang, Zhan Shu, Tingwen Huang, Yukang Cui

This paper studies the leader-following consensuses of uncertain and nonlinear multi-agent systems against composite attacks (CAs), including Denial of Service (DoS) attacks and actuation attacks (AAs). A double-layer control framework is formulated, where a digital twin layer (TL) is added beside the traditional cyber-physical layer (CPL), inspired by the recent Digital Twin technology. Consequently, the resilient control task against CAs can be divided into two parts: One is distributed estimation against DoS attacks on the TL and the other is resilient decentralized tracking control against actuation attacks on the CPL. %The data-driven scheme is used to deal with both model non-linearity and model uncertainty, in which only the input and output data of the system are employed throughout the whole control process. First, a distributed observer based on switching estimation law against DoS is designed on TL. Second, a distributed model free adaptive control (DMFAC) protocol based on attack compensation against AAs is designed on CPL. Moreover, the uniformly ultimately bounded convergence of consensus error of the proposed double-layer DMFAC algorithm is strictly proved. Finally, the simulation verifies the effectiveness of the resilient double-layer control scheme.

Submitted: Mar 22, 2023