Paper ID: 2303.14391

Multi-pooling 3D Convolutional Neural Network for fMRI Classification of Visual Brain States

Zhen Zhang, Masaki Takeda, Makoto Iwata

Neural decoding of visual object classification via functional magnetic resonance imaging (fMRI) data is challenging and is vital to understand underlying brain mechanisms. This paper proposed a multi-pooling 3D convolutional neural network (MP3DCNN) to improve fMRI classification accuracy. MP3DCNN is mainly composed of a three-layer 3DCNN, where the first and second layers of 3D convolutions each have a branch of pooling connection. The results showed that this model can improve the classification accuracy for categorical (face vs. object), face sub-categorical (male face vs. female face), and object sub-categorical (natural object vs. artificial object) classifications from 1.684% to 14.918% over the previous study in decoding brain mechanisms.

Submitted: Mar 25, 2023