Paper ID: 2303.16364

Maximum likelihood smoothing estimation in state-space models: An incomplete-information based approach

Budhi Arta Surya

This paper revisits classical works of Rauch (1963, et al. 1965) and develops a novel method for maximum likelihood (ML) smoothing estimation from incomplete information/data of stochastic state-space systems. Score function and conditional observed information matrices of incomplete data are introduced and their distributional identities are established. Using these identities, the ML smoother $\widehat{x}_{k\vert n}^s =\argmax_{x_k} \log f(x_k,\widehat{x}_{k+1\vert n}^s, y_{0:n}\vert\theta)$, $k\leq n-1$, is presented. The result shows that the ML smoother gives an estimate of state $x_k$ with more adherence of loglikehood having less standard errors than that of the ML state estimator $\widehat{x}_k=\argmax_{x_k} \log f(x_k,y_{0:k}\vert\theta)$, with $\widehat{x}_{n\vert n}^s=\widehat{x}_n$. Recursive estimation is given in terms of an EM-gradient-particle algorithm which extends the work of \cite{Lange} for ML smoothing estimation. The algorithm has an explicit iteration update which lacks in (\cite{Ramadan}) EM-algorithm for smoothing. A sequential Monte Carlo method is developed for valuation of the score function and observed information matrices. A recursive equation for the covariance matrix of estimation error is developed to calculate the standard errors. In the case of linear systems, the method shows that the Rauch-Tung-Striebel (RTS) smoother is a fully efficient smoothing state-estimator whose covariance matrix coincides with the Cram\'er-Rao lower bound, the inverse of expected information matrix. Furthermore, the RTS smoother coincides with the Kalman filter having less covariance matrix. Numerical studies are performed, confirming the accuracy of the main results.

Submitted: Mar 29, 2023