Paper ID: 2303.16704
TraVaG: Differentially Private Trace Variant Generation Using GANs
Majid Rafiei, Frederik Wangelik, Mahsa Pourbafrani, Wil M. P. van der Aalst
Process mining is rapidly growing in the industry. Consequently, privacy concerns regarding sensitive and private information included in event data, used by process mining algorithms, are becoming increasingly relevant. State-of-the-art research mainly focuses on providing privacy guarantees, e.g., differential privacy, for trace variants that are used by the main process mining techniques, e.g., process discovery. However, privacy preservation techniques for releasing trace variants still do not fulfill all the requirements of industry-scale usage. Moreover, providing privacy guarantees when there exists a high rate of infrequent trace variants is still a challenge. In this paper, we introduce TraVaG as a new approach for releasing differentially private trace variants based on \text{Generative Adversarial Networks} (GANs) that provides industry-scale benefits and enhances the level of privacy guarantees when there exists a high ratio of infrequent variants. Moreover, TraVaG overcomes shortcomings of conventional privacy preservation techniques such as bounding the length of variants and introducing fake variants. Experimental results on real-life event data show that our approach outperforms state-of-the-art techniques in terms of privacy guarantees, plain data utility preservation, and result utility preservation.
Submitted: Mar 29, 2023