Paper ID: 2303.17255
Fooling the Image Dehazing Models by First Order Gradient
Jie Gui, Xiaofeng Cong, Chengwei Peng, Yuan Yan Tang, James Tin-Yau Kwok
The research on the single image dehazing task has been widely explored. However, as far as we know, no comprehensive study has been conducted on the robustness of the well-trained dehazing models. Therefore, there is no evidence that the dehazing networks can resist malicious attacks. In this paper, we focus on designing a group of attack methods based on first order gradient to verify the robustness of the existing dehazing algorithms. By analyzing the general purpose of image dehazing task, four attack methods are proposed, which are predicted dehazed image attack, hazy layer mask attack, haze-free image attack and haze-preserved attack. The corresponding experiments are conducted on six datasets with different scales. Further, the defense strategy based on adversarial training is adopted for reducing the negative effects caused by malicious attacks. In summary, this paper defines a new challenging problem for the image dehazing area, which can be called as adversarial attack on dehazing networks (AADN). Code and Supplementary Material are available at https://github.com/Xiaofeng-life/AADN Dehazing.
Submitted: Mar 30, 2023