Paper ID: 2303.17342
PMatch: Paired Masked Image Modeling for Dense Geometric Matching
Shengjie Zhu, Xiaoming Liu
Dense geometric matching determines the dense pixel-wise correspondence between a source and support image corresponding to the same 3D structure. Prior works employ an encoder of transformer blocks to correlate the two-frame features. However, existing monocular pretraining tasks, e.g., image classification, and masked image modeling (MIM), can not pretrain the cross-frame module, yielding less optimal performance. To resolve this, we reformulate the MIM from reconstructing a single masked image to reconstructing a pair of masked images, enabling the pretraining of transformer module. Additionally, we incorporate a decoder into pretraining for improved upsampling results. Further, to be robust to the textureless area, we propose a novel cross-frame global matching module (CFGM). Since the most textureless area is planar surfaces, we propose a homography loss to further regularize its learning. Combined together, we achieve the State-of-The-Art (SoTA) performance on geometric matching. Codes and models are available at https://github.com/ShngJZ/PMatch.
Submitted: Mar 30, 2023