Paper ID: 2303.18121

BERTino: an Italian DistilBERT model

Matteo Muffo, Enrico Bertino

The recent introduction of Transformers language representation models allowed great improvements in many natural language processing (NLP) tasks. However, if on one hand the performances achieved by this kind of architectures are surprising, on the other their usability is limited by the high number of parameters which constitute their network, resulting in high computational and memory demands. In this work we present BERTino, a DistilBERT model which proposes to be the first lightweight alternative to the BERT architecture specific for the Italian language. We evaluated BERTino on the Italian ISDT, Italian ParTUT, Italian WikiNER and multiclass classification tasks, obtaining F1 scores comparable to those obtained by a BERTBASE with a remarkable improvement in training and inference speed.

Submitted: Mar 31, 2023