Paper ID: 2303.18132

A Desynchronization-Based Countermeasure Against Side-Channel Analysis of Neural Networks

Jakub Breier, Dirmanto Jap, Xiaolu Hou, Shivam Bhasin

Model extraction attacks have been widely applied, which can normally be used to recover confidential parameters of neural networks for multiple layers. Recently, side-channel analysis of neural networks allows parameter extraction even for networks with several multiple deep layers with high effectiveness. It is therefore of interest to implement a certain level of protection against these attacks. In this paper, we propose a desynchronization-based countermeasure that makes the timing analysis of activation functions harder. We analyze the timing properties of several activation functions and design the desynchronization in a way that the dependency on the input and the activation type is hidden. We experimentally verify the effectiveness of the countermeasure on a 32-bit ARM Cortex-M4 microcontroller and employ a t-test to show the side-channel information leakage. The overhead ultimately depends on the number of neurons in the fully-connected layer, for example, in the case of 4096 neurons in VGG-19, the overheads are between 2.8% and 11%.

Submitted: Mar 25, 2023