Paper ID: 2304.03945

Knowledge Relation Rank Enhanced Heterogeneous Learning Interaction Modeling for Neural Graph Forgetting Knowledge Tracing

Linqing Li, Zhifeng Wang

Recently, knowledge tracing models have been applied in educational data mining such as the Self-attention knowledge tracing model(SAKT), which models the relationship between exercises and Knowledge concepts(Kcs). However, relation modeling in traditional Knowledge tracing models only considers the static question-knowledge relationship and knowledge-knowledge relationship and treats these relationships with equal importance. This kind of relation modeling is difficult to avoid the influence of subjective labeling and considers the relationship between exercises and KCs, or KCs and KCs separately. In this work, a novel knowledge tracing model, named Knowledge Relation Rank Enhanced Heterogeneous Learning Interaction Modeling for Neural Graph Forgetting Knowledge Tracing(NGFKT), is proposed to reduce the impact of the subjective labeling by calibrating the skill relation matrix and the Q-matrix and apply the Graph Convolutional Network(GCN) to model the heterogeneous interactions between students, exercises, and skills. Specifically, the skill relation matrix and Q-matrix are generated by the Knowledge Relation Importance Rank Calibration method(KRIRC). Then the calibrated skill relation matrix, Q-matrix, and the heterogeneous interactions are treated as the input of the GCN to generate the exercise embedding and skill embedding. Next, the exercise embedding, skill embedding, item difficulty, and contingency table are incorporated to generate an exercise relation matrix as the inputs of the Position-Relation-Forgetting attention mechanism. Finally, the Position-Relation-Forgetting attention mechanism is applied to make the predictions. Experiments are conducted on the two public educational datasets and results indicate that the NGFKT model outperforms all baseline models in terms of AUC, ACC, and Performance Stability(PS).

Submitted: Apr 8, 2023