Paper ID: 2304.04753

$\textit{e-Uber}$: A Crowdsourcing Platform for Electric Vehicle-based Ride- and Energy-sharing

Ashutosh Timilsina, Simone Silvestri

The sharing-economy-based business model has recently seen success in the transportation and accommodation sectors with companies like Uber and Airbnb. There is growing interest in applying this model to energy systems, with modalities like peer-to-peer (P2P) Energy Trading, Electric Vehicles (EV)-based Vehicle-to-Grid (V2G), Vehicle-to-Home (V2H), Vehicle-to-Vehicle (V2V), and Battery Swapping Technology (BST). In this work, we exploit the increasing diffusion of EVs to realize a crowdsourcing platform called e-Uber that jointly enables ride-sharing and energy-sharing through V2G and BST. e-Uber exploits spatial crowdsourcing, reinforcement learning, and reverse auction theory. Specifically, the platform uses reinforcement learning to understand the drivers' preferences towards different ride-sharing and energy-sharing tasks. Based on these preferences, a personalized list is recommended to each driver through CMAB-based Algorithm for task Recommendation System (CARS). Drivers bid on their preferred tasks in their list in a reverse auction fashion. Then e-Uber solves the task assignment optimization problem that minimizes cost and guarantees V2G energy requirement. We prove that this problem is NP-hard and introduce a bipartite matching-inspired heuristic, Bipartite Matching-based Winner selection (BMW), that has polynomial time complexity. Results from experiments using real data from NYC taxi trips and energy consumption show that e-Uber performs close to the optimum and finds better solutions compared to a state-of-the-art approach

Submitted: Mar 31, 2023