Paper ID: 2304.06495
An embedding for EEG signals learned using a triplet loss
Pierre Guetschel, Théodore Papadopoulo, Michael Tangermann
Neurophysiological time series recordings like the electroencephalogram (EEG) or local field potentials are obtained from multiple sensors. They can be decoded by machine learning models in order to estimate the ongoing brain state of a patient or healthy user. In a brain-computer interface (BCI), this decoded brain state information can be used with minimal time delay to either control an application, e.g., for communication or for rehabilitation after stroke, or to passively monitor the ongoing brain state of the subject, e.g., in a demanding work environment. A specific challenge in such decoding tasks is posed by the small dataset sizes in BCI compared to other domains of machine learning like computer vision or natural language processing. A possibility to tackle classification or regression problems in BCI despite small training data sets is through transfer learning, which utilizes data from other sessions, subjects or even datasets to train a model. In this exploratory study, we propose novel domain-specific embeddings for neurophysiological data. Our approach is based on metric learning and builds upon the recently proposed ladder loss. Using embeddings allowed us to benefit, both from the good generalisation abilities and robustness of deep learning and from the fast training of classical machine learning models for subject-specific calibration. In offline analyses using EEG data of 14 subjects, we tested the embeddings' feasibility and compared their efficiency with state-of-the-art deep learning models and conventional machine learning pipelines. In summary, we propose the use of metric learning to obtain pre-trained embeddings of EEG-BCI data as a means to incorporate domain knowledge and to reach competitive performance on novel subjects with minimal calibration requirements.
Submitted: Mar 23, 2023