Paper ID: 2304.06696
Improving novelty detection with generative adversarial networks on hand gesture data
Miguel Simão, Pedro Neto, Olivier Gibaru
We propose a novel way of solving the issue of classification of out-of-vocabulary gestures using Artificial Neural Networks (ANNs) trained in the Generative Adversarial Network (GAN) framework. A generative model augments the data set in an online fashion with new samples and stochastic target vectors, while a discriminative model determines the class of the samples. The approach was evaluated on the UC2017 SG and UC2018 DualMyo data sets. The generative models performance was measured with a distance metric between generated and real samples. The discriminative models were evaluated by their accuracy on trained and novel classes. In terms of sample generation quality, the GAN is significantly better than a random distribution (noise) in mean distance, for all classes. In the classification tests, the baseline neural network was not capable of identifying untrained gestures. When the proposed methodology was implemented, we found that there is a trade-off between the detection of trained and untrained gestures, with some trained samples being mistaken as novelty. Nevertheless, a novelty detection accuracy of 95.4% or 90.2% (depending on the data set) was achieved with just 5% loss of accuracy on trained classes.
Submitted: Apr 13, 2023