Paper ID: 2304.06907
Toward Real-Time Image Annotation Using Marginalized Coupled Dictionary Learning
Seyed Mahdi Roostaiyan, Mohammad Mehdi Hosseini, Mahya Mohammadi Kashani, S. Hamid Amiri
In most image retrieval systems, images include various high-level semantics, called tags or annotations. Virtually all the state-of-the-art image annotation methods that handle imbalanced labeling are search-based techniques which are time-consuming. In this paper, a novel coupled dictionary learning approach is proposed to learn a limited number of visual prototypes and their corresponding semantics simultaneously. This approach leads to a real-time image annotation procedure. Another contribution of this paper is that utilizes a marginalized loss function instead of the squared loss function that is inappropriate for image annotation with imbalanced labels. We have employed a marginalized loss function in our method to leverage a simple and effective method of prototype updating. Meanwhile, we have introduced ${\ell}_1$ regularization on semantic prototypes to preserve the sparse and imbalanced nature of labels in learned semantic prototypes. Finally, comprehensive experimental results on various datasets demonstrate the efficiency of the proposed method for image annotation tasks in terms of accuracy and time. The reference implementation is publicly available on https://github.com/hamid-amiri/MCDL-Image-Annotation.
Submitted: Apr 14, 2023