Paper ID: 2304.07747
Language Guided Local Infiltration for Interactive Image Retrieval
Fuxiang Huang, Lei Zhang
Interactive Image Retrieval (IIR) aims to retrieve images that are generally similar to the reference image but under the requested text modification. The existing methods usually concatenate or sum the features of image and text simply and roughly, which, however, is difficult to precisely change the local semantics of the image that the text intends to modify. To solve this problem, we propose a Language Guided Local Infiltration (LGLI) system, which fully utilizes the text information and penetrates text features into image features as much as possible. Specifically, we first propose a Language Prompt Visual Localization (LPVL) module to generate a localization mask which explicitly locates the region (semantics) intended to be modified. Then we introduce a Text Infiltration with Local Awareness (TILA) module, which is deployed in the network to precisely modify the reference image and generate image-text infiltrated representation. Extensive experiments on various benchmark databases validate that our method outperforms most state-of-the-art IIR approaches.
Submitted: Apr 16, 2023