Paper ID: 2304.08319
Towards Computational Performance Engineering for Unsupervised Concept Drift Detection -- Complexities, Benchmarking, Performance Analysis
Elias Werner, Nishant Kumar, Matthias Lieber, Sunna Torge, Stefan Gumhold, Wolfgang E. Nagel
Concept drift detection is crucial for many AI systems to ensure the system's reliability. These systems often have to deal with large amounts of data or react in real-time. Thus, drift detectors must meet computational requirements or constraints with a comprehensive performance evaluation. However, so far, the focus of developing drift detectors is on inference quality, e.g. accuracy, but not on computational performance, such as runtime. Many of the previous works consider computational performance only as a secondary objective and do not have a benchmark for such evaluation. Hence, we propose and explain performance engineering for unsupervised concept drift detection that reflects on computational complexities, benchmarking, and performance analysis. We provide the computational complexities of existing unsupervised drift detectors and discuss why further computational performance investigations are required. Hence, we state and substantiate the aspects of a benchmark for unsupervised drift detection reflecting on inference quality and computational performance. Furthermore, we demonstrate performance analysis practices that have proven their effectiveness in High-Performance Computing, by tracing two drift detectors and displaying their performance data.
Submitted: Apr 17, 2023