Paper ID: 2304.08342

NF-ULA: Langevin Monte Carlo with Normalizing Flow Prior for Imaging Inverse Problems

Ziruo Cai, Junqi Tang, Subhadip Mukherjee, Jinglai Li, Carola Bibiane Schönlieb, Xiaoqun Zhang

Bayesian methods for solving inverse problems are a powerful alternative to classical methods since the Bayesian approach offers the ability to quantify the uncertainty in the solution. In recent years, data-driven techniques for solving inverse problems have also been remarkably successful, due to their superior representation ability. In this work, we incorporate data-based models into a class of Langevin-based sampling algorithms for Bayesian inference in imaging inverse problems. In particular, we introduce NF-ULA (Normalizing Flow-based Unadjusted Langevin algorithm), which involves learning a normalizing flow (NF) as the image prior. We use NF to learn the prior because a tractable closed-form expression for the log prior enables the differentiation of it using autograd libraries. Our algorithm only requires a normalizing flow-based generative network, which can be pre-trained independently of the considered inverse problem and the forward operator. We perform theoretical analysis by investigating the well-posedness and non-asymptotic convergence of the resulting NF-ULA algorithm. The efficacy of the proposed NF-ULA algorithm is demonstrated in various image restoration problems such as image deblurring, image inpainting, and limited-angle X-ray computed tomography (CT) reconstruction. NF-ULA is found to perform better than competing methods for severely ill-posed inverse problems.

Submitted: Apr 17, 2023