Paper ID: 2304.08754

W-MAE: Pre-trained weather model with masked autoencoder for multi-variable weather forecasting

Xin Man, Chenghong Zhang, Jin Feng, Changyu Li, Jie Shao

Weather forecasting is a long-standing computational challenge with direct societal and economic impacts. This task involves a large amount of continuous data collection and exhibits rich spatiotemporal dependencies over long periods, making it highly suitable for deep learning models. In this paper, we apply pre-training techniques to weather forecasting and propose W-MAE, a Weather model with Masked AutoEncoder pre-training for weather forecasting. W-MAE is pre-trained in a self-supervised manner to reconstruct spatial correlations within meteorological variables. On the temporal scale, we fine-tune the pre-trained W-MAE to predict the future states of meteorological variables, thereby modeling the temporal dependencies present in weather data. We conduct our experiments using the fifth-generation ECMWF Reanalysis (ERA5) data, with samples selected every six hours. Experimental results show that our W-MAE framework offers three key benefits: 1) when predicting the future state of meteorological variables, the utilization of our pre-trained W-MAE can effectively alleviate the problem of cumulative errors in prediction, maintaining stable performance in the short-to-medium term; 2) when predicting diagnostic variables (e.g., total precipitation), our model exhibits significant performance advantages over FourCastNet; 3) Our task-agnostic pre-training schema can be easily integrated with various task-specific models. When our pre-training framework is applied to FourCastNet, it yields an average 20% performance improvement in Anomaly Correlation Coefficient (ACC).

Submitted: Apr 18, 2023