Paper ID: 2304.08842

UDTIRI: An Online Open-Source Intelligent Road Inspection Benchmark Suite

Sicen Guo, Jiahang Li, Yi Feng, Dacheng Zhou, Denghuang Zhang, Chen Chen, Shuai Su, Xingyi Zhu, Qijun Chen, Rui Fan

In the nascent domain of urban digital twins (UDT), the prospects for leveraging cutting-edge deep learning techniques are vast and compelling. Particularly within the specialized area of intelligent road inspection (IRI), a noticeable gap exists, underscored by the current dearth of dedicated research efforts and the lack of large-scale well-annotated datasets. To foster advancements in this burgeoning field, we have launched an online open-source benchmark suite, referred to as UDTIRI. Along with this article, we introduce the road pothole detection task, the first online competition published within this benchmark suite. This task provides a well-annotated dataset, comprising 1,000 RGB images and their pixel/instance-level ground-truth annotations, captured in diverse real-world scenarios under different illumination and weather conditions. Our benchmark provides a systematic and thorough evaluation of state-of-the-art object detection, semantic segmentation, and instance segmentation networks, developed based on either convolutional neural networks or Transformers. We anticipate that our benchmark will serve as a catalyst for the integration of advanced UDT techniques into IRI. By providing algorithms with a more comprehensive understanding of diverse road conditions, we seek to unlock their untapped potential and foster innovation in this critical domain.

Submitted: Apr 18, 2023