Paper ID: 2304.09434

Torque-based Deep Reinforcement Learning for Task-and-Robot Agnostic Learning on Bipedal Robots Using Sim-to-Real Transfer

Donghyeon Kim, Glen Berseth, Mathew Schwartz, Jaeheung Park

In this paper, we review the question of which action space is best suited for controlling a real biped robot in combination with Sim2Real training. Position control has been popular as it has been shown to be more sample efficient and intuitive to combine with other planning algorithms. However, for position control gain tuning is required to achieve the best possible policy performance. We show that instead, using a torque-based action space enables task-and-robot agnostic learning with less parameter tuning and mitigates the sim-to-reality gap by taking advantage of torque control's inherent compliance. Also, we accelerate the torque-based-policy training process by pre-training the policy to remain upright by compensating for gravity. The paper showcases the first successful sim-to-real transfer of a torque-based deep reinforcement learning policy on a real human-sized biped robot. The video is available at https://youtu.be/CR6pTS39VRE.

Submitted: Apr 19, 2023