Paper ID: 2304.09751
Skeleton-based action analysis for ADHD diagnosis
Yichun Li, Yi Li, Rajesh Nair, Syed Mohsen Naqvi
Attention Deficit Hyperactivity Disorder (ADHD) is a common neurobehavioral disorder worldwide. While extensive research has focused on machine learning methods for ADHD diagnosis, most research relies on high-cost equipment, e.g., MRI machine and EEG patch. Therefore, low-cost diagnostic methods based on the action characteristics of ADHD are desired. Skeleton-based action recognition has gained attention due to the action-focused nature and robustness. In this work, we propose a novel ADHD diagnosis system with a skeleton-based action recognition framework, utilizing a real multi-modal ADHD dataset and state-of-the-art detection algorithms. Compared to conventional methods, the proposed method shows cost-efficiency and significant performance improvement, making it more accessible for a broad range of initial ADHD diagnoses. Through the experiment results, the proposed method outperforms the conventional methods in accuracy and AUC. Meanwhile, our method is widely applicable for mass screening.
Submitted: Apr 14, 2023