Paper ID: 2304.10701

GMValuator: Similarity-based Data Valuation for Generative Models

Jiaxi Yang, Wenglong Deng, Benlin Liu, Yangsibo Huang, James Zou, Xiaoxiao Li

Data valuation plays a crucial role in machine learning. Existing data valuation methods have primarily focused on discriminative models, neglecting generative models that have recently gained considerable attention. A very few existing attempts of data valuation method designed for deep generative models either concentrates on specific models or lacks robustness in their outcomes. Moreover, efficiency still reveals vulnerable shortcomings. To bridge the gaps, we formulate the data valuation problem in generative models from a similarity-matching perspective. Specifically, we introduce Generative Model Valuator (GMValuator), the first training-free and model-agnostic approach to provide data valuation for generation tasks. It empowers efficient data valuation through our innovatively similarity matching module, calibrates biased contribution by incorporating image quality assessment, and attributes credits to all training samples based on their contributions to the generated samples. Additionally, we introduce four evaluation criteria for assessing data valuation methods in generative models, aligning with principles of plausibility and truthfulness. GMValuator is extensively evaluated on various datasets and generative architectures to demonstrate its effectiveness.

Submitted: Apr 21, 2023