Paper ID: 2304.11086

Development of Authenticated Clients and Applications for ICICLE CI Services -- Final Report for the REHS Program, June-August, 2022

Sahil Samar, Mia Chen, Jack Karpinski, Michael Ray, Archita Sarin, Christian Garcia, Matthew Lange, Joe Stubbs, Mary Thomas

The Artificial Intelligence (AI) institute for Intelligent Cyberinfrastructure with Computational Learning in the Environment (ICICLE) is funded by the NSF to build the next generation of Cyberinfrastructure to render AI more accessible to everyone and drive its further democratization in the larger society. We describe our efforts to develop Jupyter Notebooks and Python command line clients that would access these ICICLE resources and services using ICICLE authentication mechanisms. To connect our clients, we used Tapis, which is a framework that supports computational research to enable scientists to access, utilize, and manage multi-institution resources and services. We used Neo4j to organize data into a knowledge graph (KG). We then hosted the KG on a Tapis Pod, which offers persistent data storage with a template made specifically for Neo4j KGs. In order to demonstrate the capabilities of our software, we developed several clients: Jupyter notebooks authentication, Neural Networks (NN) notebook, and command line applications that provide a convenient frontend to the Tapis API. In addition, we developed a data processing notebook that can manipulate KGs on the Tapis servers, including creations of a KG, data upload and modification. In this report we present the software architecture, design and approach, the successfulness of our client software, and future work.

Submitted: Apr 17, 2023