Paper ID: 2304.12284

Synthpop++: A Hybrid Framework for Generating A Country-scale Synthetic Population

Bhavesh Neekhra, Kshitij Kapoor, Debayan Gupta

Population censuses are vital to public policy decision-making. They provide insight into human resources, demography, culture, and economic structure at local, regional, and national levels. However, such surveys are very expensive (especially for low and middle-income countries with high populations, such as India), time-consuming, and may also raise privacy concerns, depending upon the kinds of data collected. In light of these issues, we introduce SynthPop++, a novel hybrid framework, which can combine data from multiple real-world surveys (with different, partially overlapping sets of attributes) to produce a real-scale synthetic population of humans. Critically, our population maintains family structures comprising individuals with demographic, socioeconomic, health, and geolocation attributes: this means that our ``fake'' people live in realistic locations, have realistic families, etc. Such data can be used for a variety of purposes: we explore one such use case, Agent-based modelling of infectious disease in India. To gauge the quality of our synthetic population, we use both machine learning and statistical metrics. Our experimental results show that synthetic population can realistically simulate the population for various administrative units of India, producing real-scale, detailed data at the desired level of zoom -- from cities, to districts, to states, eventually combining to form a country-scale synthetic population.

Submitted: Apr 24, 2023