Paper ID: 2304.13121
Multi-Speaker Multi-Lingual VQTTS System for LIMMITS 2023 Challenge
Chenpeng Du, Yiwei Guo, Feiyu Shen, Kai Yu
In this paper, we describe the systems developed by the SJTU X-LANCE team for LIMMITS 2023 Challenge, and we mainly focus on the winning system on naturalness for track 1. The aim of this challenge is to build a multi-speaker multi-lingual text-to-speech (TTS) system for Marathi, Hindi and Telugu. Each of the languages has a male and a female speaker in the given dataset. In track 1, only 5 hours data from each speaker can be selected to train the TTS model. Our system is based on the recently proposed VQTTS that utilizes VQ acoustic feature rather than mel-spectrogram. We introduce additional speaker embeddings and language embeddings to VQTTS for controlling the speaker and language information. In the cross-lingual evaluations where we need to synthesize speech in a cross-lingual speaker's voice, we provide a native speaker's embedding to the acoustic model and the target speaker's embedding to the vocoder. In the subjective MOS listening test on naturalness, our system achieves 4.77 which ranks first.
Submitted: Apr 25, 2023