Paper ID: 2304.13302
HiQ -- A Declarative, Non-intrusive, Dynamic and Transparent Observability and Optimization System
Fuheng Wu, Ivan Davchev, Jun Qian
This paper proposes a non-intrusive, declarative, dynamic and transparent system called `HiQ` to track Python program runtime information without compromising on the run-time system performance and losing insight. HiQ can be used for monolithic and distributed systems, offline and online applications. HiQ is developed when we optimize our large deep neural network (DNN) models which are written in Python, but it can be generalized to any Python program or distributed system, or even other languages like Java. We have implemented the system and adopted it in our deep learning model life cycle management system to catch the bottleneck while keeping our production code clean and highly performant. The implementation is open-sourced at: [https://github.com/oracle/hiq](https://github.com/oracle/hiq).
Submitted: Apr 26, 2023