Paper ID: 2304.13427

Training-Free Location-Aware Text-to-Image Synthesis

Jiafeng Mao, Xueting Wang

Current large-scale generative models have impressive efficiency in generating high-quality images based on text prompts. However, they lack the ability to precisely control the size and position of objects in the generated image. In this study, we analyze the generative mechanism of the stable diffusion model and propose a new interactive generation paradigm that allows users to specify the position of generated objects without additional training. Moreover, we propose an object detection-based evaluation metric to assess the control capability of location aware generation task. Our experimental results show that our method outperforms state-of-the-art methods on both control capacity and image quality.

Submitted: Apr 26, 2023