Paper ID: 2304.13513

Cluster Entropy: Active Domain Adaptation in Pathological Image Segmentation

Xiaoqing Liu, Kengo Araki, Shota Harada, Akihiko Yoshizawa, Kazuhiro Terada, Mariyo Kurata, Naoki Nakajima, Hiroyuki Abe, Tetsuo Ushiku, Ryoma Bise

The domain shift in pathological segmentation is an important problem, where a network trained by a source domain (collected at a specific hospital) does not work well in the target domain (from different hospitals) due to the different image features. Due to the problems of class imbalance and different class prior of pathology, typical unsupervised domain adaptation methods do not work well by aligning the distribution of source domain and target domain. In this paper, we propose a cluster entropy for selecting an effective whole slide image (WSI) that is used for semi-supervised domain adaptation. This approach can measure how the image features of the WSI cover the entire distribution of the target domain by calculating the entropy of each cluster and can significantly improve the performance of domain adaptation. Our approach achieved competitive results against the prior arts on datasets collected from two hospitals.

Submitted: Apr 26, 2023