Paper ID: 2304.14403

Make It So: Steering StyleGAN for Any Image Inversion and Editing

Anand Bhattad, Viraj Shah, Derek Hoiem, D. A. Forsyth

StyleGAN's disentangled style representation enables powerful image editing by manipulating the latent variables, but accurately mapping real-world images to their latent variables (GAN inversion) remains a challenge. Existing GAN inversion methods struggle to maintain editing directions and produce realistic results. To address these limitations, we propose Make It So, a novel GAN inversion method that operates in the $\mathcal{Z}$ (noise) space rather than the typical $\mathcal{W}$ (latent style) space. Make It So preserves editing capabilities, even for out-of-domain images. This is a crucial property that was overlooked in prior methods. Our quantitative evaluations demonstrate that Make It So outperforms the state-of-the-art method PTI~\cite{roich2021pivotal} by a factor of five in inversion accuracy and achieves ten times better edit quality for complex indoor scenes.

Submitted: Apr 27, 2023