Paper ID: 2304.14483
Adversary Aware Continual Learning
Muhammad Umer, Robi Polikar
Class incremental learning approaches are useful as they help the model to learn new information (classes) sequentially, while also retaining the previously acquired information (classes). However, it has been shown that such approaches are extremely vulnerable to the adversarial backdoor attacks, where an intelligent adversary can introduce small amount of misinformation to the model in the form of imperceptible backdoor pattern during training to cause deliberate forgetting of a specific task or class at test time. In this work, we propose a novel defensive framework to counter such an insidious attack where, we use the attacker's primary strength-hiding the backdoor pattern by making it imperceptible to humans-against it, and propose to learn a perceptible (stronger) pattern (also during the training) that can overpower the attacker's imperceptible (weaker) pattern. We demonstrate the effectiveness of the proposed defensive mechanism through various commonly used Replay-based (both generative and exact replay-based) class incremental learning algorithms using continual learning benchmark variants of CIFAR-10, CIFAR-100, and MNIST datasets. Most noteworthy, our proposed defensive framework does not assume that the attacker's target task and target class is known to the defender. The defender is also unaware of the shape, size, and location of the attacker's pattern. We show that our proposed defensive framework considerably improves the performance of class incremental learning algorithms with no knowledge of the attacker's target task, attacker's target class, and attacker's imperceptible pattern. We term our defensive framework as Adversary Aware Continual Learning (AACL).
Submitted: Apr 27, 2023