Paper ID: 2304.14662
CED: Catalog Extraction from Documents
Tong Zhu, Guoliang Zhang, Zechang Li, Zijian Yu, Junfei Ren, Mengsong Wu, Zhefeng Wang, Baoxing Huai, Pingfu Chao, Wenliang Chen
Sentence-by-sentence information extraction from long documents is an exhausting and error-prone task. As the indicator of document skeleton, catalogs naturally chunk documents into segments and provide informative cascade semantics, which can help to reduce the search space. Despite their usefulness, catalogs are hard to be extracted without the assist from external knowledge. For documents that adhere to a specific template, regular expressions are practical to extract catalogs. However, handcrafted heuristics are not applicable when processing documents from different sources with diverse formats. To address this problem, we build a large manually annotated corpus, which is the first dataset for the Catalog Extraction from Documents (CED) task. Based on this corpus, we propose a transition-based framework for parsing documents into catalog trees. The experimental results demonstrate that our proposed method outperforms baseline systems and shows a good ability to transfer. We believe the CED task could fill the gap between raw text segments and information extraction tasks on extremely long documents. Data and code are available at \url{https://github.com/Spico197/CatalogExtraction}
Submitted: Apr 28, 2023