Paper ID: 2305.00205

Towards Discovering Erratic Behavior in Robotic Process Automation with Statistical Process Control

Petr Prucha

Companies that use robotic process automation very often deal with problems maintaining the bots in their RPA portfolio. Current key performance indicators do not track the behavior of RPA bots or processes. For better maintainability of RPA bots, it is crucial to easily identify problematic behavior in RPA bots. Therefore, we propose a strategy that tracks and measures the behavior of processes to increase the maintainability of RPA bots. We selected indicators of statistical dispersion for measuring variability to analyze the behavior of RPA bots. We analyzed how well statistical dispersion can describe the behavior of RPA bots on 12 processes. The results provide evidence that, by using statistical dispersion for behavioral analysis, the unwanted behavior of RPA bots can be described. Our results showed that statistical dispersion can describe the success rate with a correlation of -0.91 and outliers in the data with a correlation of 0.42. Also, the results demonstrate that the outliers do not influence the success rate of RPA bots. This research implies that we can describe the behavior of RPA bots with variable analysis. Furthermore, with high probability, it can also be used for analyzing other processes, as a tool for gaining insights into performance and as a benchmark tool for comparing or selecting a process to rework.

Submitted: Apr 29, 2023