Paper ID: 2305.00671
PRSeg: A Lightweight Patch Rotate MLP Decoder for Semantic Segmentation
Yizhe Ma, Fangjian Lin, Sitong Wu, Shengwei Tian, Long Yu
The lightweight MLP-based decoder has become increasingly promising for semantic segmentation. However, the channel-wise MLP cannot expand the receptive fields, lacking the context modeling capacity, which is critical to semantic segmentation. In this paper, we propose a parametric-free patch rotate operation to reorganize the pixels spatially. It first divides the feature map into multiple groups and then rotates the patches within each group. Based on the proposed patch rotate operation, we design a novel segmentation network, named PRSeg, which includes an off-the-shelf backbone and a lightweight Patch Rotate MLP decoder containing multiple Dynamic Patch Rotate Blocks (DPR-Blocks). In each DPR-Block, the fully connected layer is performed following a Patch Rotate Module (PRM) to exchange spatial information between pixels. Specifically, in PRM, the feature map is first split into the reserved part and rotated part along the channel dimension according to the predicted probability of the Dynamic Channel Selection Module (DCSM), and our proposed patch rotate operation is only performed on the rotated part. Extensive experiments on ADE20K, Cityscapes and COCO-Stuff 10K datasets prove the effectiveness of our approach. We expect that our PRSeg can promote the development of MLP-based decoder in semantic segmentation.
Submitted: May 1, 2023