Paper ID: 2305.02507

Stimulative Training++: Go Beyond The Performance Limits of Residual Networks

Peng Ye, Tong He, Shengji Tang, Baopu Li, Tao Chen, Lei Bai, Wanli Ouyang

Residual networks have shown great success and become indispensable in recent deep neural network models. In this work, we aim to re-investigate the training process of residual networks from a novel social psychology perspective of loafing, and further propose a new training scheme as well as three improved strategies for boosting residual networks beyond their performance limits. Previous research has suggested that residual networks can be considered as ensembles of shallow networks, which implies that the final performance of a residual network is influenced by a group of subnetworks. We identify a previously overlooked problem that is analogous to social loafing, where subnetworks within a residual network are prone to exert less effort when working as part of a group compared to working alone. We define this problem as \textit{network loafing}. Similar to the decreased individual productivity and overall performance as demonstrated in society, network loafing inevitably causes sub-par performance. Inspired by solutions from social psychology, we first propose a novel training scheme called stimulative training, which randomly samples a residual subnetwork and calculates the KL divergence loss between the sampled subnetwork and the given residual network for extra supervision. In order to unleash the potential of stimulative training, we further propose three simple-yet-effective strategies, including a novel KL- loss that only aligns the network logits direction, random smaller inputs for subnetworks, and inter-stage sampling rules. Comprehensive experiments and analysis verify the effectiveness of stimulative training as well as its three improved strategies.

Submitted: May 4, 2023