Paper ID: 2305.03201
Enhancing Pashto Text Classification using Language Processing Techniques for Single And Multi-Label Analysis
Mursal Dawodi, Jawid Ahmad Baktash
Text classification has become a crucial task in various fields, leading to a significant amount of research on developing automated text classification systems for national and international languages. However, there is a growing need for automated text classification systems that can handle local languages. This study aims to establish an automated classification system for Pashto text. To achieve this goal, we constructed a dataset of Pashto documents and applied various models, including statistical and neural machine learning models such as DistilBERT-base-multilingual-cased, Multilayer Perceptron, Support Vector Machine, K Nearest Neighbor, decision tree, Gaussian na\"ive Bayes, multinomial na\"ive Bayes, random forest, and logistic regression, to identify the most effective approach. We also evaluated two different feature extraction methods, bag of words and Term Frequency Inverse Document Frequency. The study achieved an average testing accuracy rate of 94% using the MLP classification algorithm and TFIDF feature extraction method in single-label multiclass classification. Similarly, MLP+TFIDF yielded the best results, with an F1-measure of 0.81. Furthermore, the use of pre-trained language representation models, such as DistilBERT, showed promising results for Pashto text classification; however, the study highlights the importance of developing a specific tokenizer for a particular language to achieve reasonable results.
Submitted: May 4, 2023