Paper ID: 2305.03509

Diffusion Explainer: Visual Explanation for Text-to-image Stable Diffusion

Seongmin Lee, Benjamin Hoover, Hendrik Strobelt, Zijie J. Wang, ShengYun Peng, Austin Wright, Kevin Li, Haekyu Park, Haoyang Yang, Duen Horng Chau

Diffusion-based generative models' impressive ability to create convincing images has garnered global attention. However, their complex structures and operations often pose challenges for non-experts to grasp. We present Diffusion Explainer, the first interactive visualization tool that explains how Stable Diffusion transforms text prompts into images. Diffusion Explainer tightly integrates a visual overview of Stable Diffusion's complex structure with explanations of the underlying operations. By comparing image generation of prompt variants, users can discover the impact of keyword changes on image generation. A 56-participant user study demonstrates that Diffusion Explainer offers substantial learning benefits to non-experts. Our tool has been used by over 10,300 users from 124 countries at this https URL.

Submitted: May 4, 2023