Paper ID: 2305.04004

Towards a Simple Framework of Skill Transfer Learning for Robotic Ultrasound-guidance Procedures

Tsz Yan Leung, Miguel Xochicale

In this paper, we present a simple framework of skill transfer learning for robotic ultrasound-guidance procedures. We briefly review challenges in skill transfer learning for robotic ultrasound-guidance procedures. We then identify the need of appropriate sampling techniques, computationally efficient neural networks models that lead to the proposal of a simple framework of skill transfer learning for real-time applications in robotic ultrasound-guidance procedures. We present pilot experiments from two participants (one experienced clinician and one non-clinician) looking for an optimal scanning plane of the four-chamber cardiac view from a fetal phantom. We analysed ultrasound image frames, time series of texture image features and quaternions and found that the experienced clinician performed the procedure in a quicker and smoother way compared to lengthy and non-constant movements from non-clinicians. For future work, we pointed out the need of pruned and quantised neural network models for real-time applications in robotic ultrasound-guidance procedure. The resources to reproduce this work are available at \url{https://github.com/mxochicale/rami-icra2023}.

Submitted: May 6, 2023