Paper ID: 2305.04241

Vcc: Scaling Transformers to 128K Tokens or More by Prioritizing Important Tokens

Zhanpeng Zeng, Cole Hawkins, Mingyi Hong, Aston Zhang, Nikolaos Pappas, Vikas Singh, Shuai Zheng

Transformers are central in modern natural language processing and computer vision applications. Despite recent works devoted to reducing the quadratic cost of such models (as a function of the sequence length), dealing with ultra long sequences (e.g., with more than 16K tokens) remains challenging. Applications such as answering questions based on a book or summarizing a scientific article are inefficient or infeasible. Here, we propose to significantly improve the efficiency of Transformers for ultra long sequences, by compressing the sequence into a much smaller representation at each layer. Specifically, by exploiting the fact that in many tasks, only a small subset of special tokens (we call VIP-tokens) are most relevant to the final prediction, we propose a VIP-token centric compression (VCC) scheme which selectively compresses the sequence based on their impact on approximating the representation of the VIP-tokens. Compared with competitive baselines, our algorithm is not only efficient (achieving more than $3\times$ efficiency gain compared to baselines on 4K and 16K lengths), but also offers competitive/better performance on a large number of tasks. Further, we show that our algorithm scales to 128K tokens (or more) while consistently offering accuracy improvement.

Submitted: May 7, 2023