Paper ID: 2305.05161

Child Palm-ID: Contactless Palmprint Recognition for Children

Akash Godbole, Steven A. Grosz, Anil K. Jain

Effective distribution of nutritional and healthcare aid for children, particularly infants and toddlers, in some of the least developed and most impoverished countries of the world, is a major problem due to the lack of reliable identification documents. Biometric authentication technology has been investigated to address child recognition in the absence of reliable ID documents. We present a mobile-based contactless palmprint recognition system, called Child Palm-ID, which meets the requirements of usability, hygiene, cost, and accuracy for child recognition. Using a contactless child palmprint database, Child-PalmDB1, consisting of 19,158 images from 1,020 unique palms (in the age range of 6 mos. to 48 mos.), we report a TAR=94.11% @ FAR=0.1%. The proposed Child Palm-ID system is also able to recognize adults, achieving a TAR=99.4% on the CASIA contactless palmprint database and a TAR=100% on the COEP contactless adult palmprint database, both @ FAR=0.1%. These accuracies are competitive with the SOTA provided by COTS systems. Despite these high accuracies, we show that the TAR for time-separated child-palmprints is only 78.1% @ FAR=0.1%.

Submitted: May 9, 2023