Paper ID: 2305.05463

Multi-Tier Hierarchical Federated Learning-assisted NTN for Intelligent IoT Services

Amin Farajzadeh, Animesh Yadav, Halim Yanikomeroglu

In the ever-expanding landscape of the IoT, managing the intricate network of interconnected devices presents a fundamental challenge. This leads us to ask: "What if we invite the IoT devices to collaboratively participate in real-time network management and IoT data-handling decisions?" This inquiry forms the foundation of our innovative approach, addressing the burgeoning complexities in IoT through the integration of NTN architecture, in particular, VHetNet, and an MT-HFL framework. VHetNets transcend traditional network paradigms by harmonizing terrestrial and non-terrestrial elements, thus ensuring expansive connectivity and resilience, especially crucial in areas with limited terrestrial infrastructure. The incorporation of MT-HFL further revolutionizes this architecture, distributing intelligent data processing across a multi-tiered network spectrum, from edge devices on the ground to aerial platforms and satellites above. This study explores MT-HFL's role in fostering a decentralized, collaborative learning environment, enabling IoT devices to not only contribute but also make informed decisions in network management. This methodology adeptly handles the challenges posed by the non-IID nature of IoT data and efficiently curtails communication overheads prevalent in extensive IoT networks. Significantly, MT-HFL enhances data privacy, a paramount aspect in IoT ecosystems, by facilitating local data processing and limiting the sharing of model updates instead of raw data. By evaluating a case-study, our findings demonstrate that the synergistic integration of MT-HFL within VHetNets creates an intelligent network architecture that is robust, scalable, and dynamically adaptive to the ever-changing demands of IoT environments. This setup ensures efficient data handling, advanced privacy and security measures, and responsive adaptability to fluctuating network conditions.

Submitted: May 9, 2023