Paper ID: 2305.06869
An Adaptive Graduated Nonconvexity Loss Function for Robust Nonlinear Least Squares Solutions
Kyungmin Jung, Thomas Hitchcox, James Richard Forbes
Many problems in robotics, such as estimating the state from noisy sensor data or aligning two point clouds, can be posed and solved as least-squares problems. Unfortunately, vanilla nonminimal solvers for least-squares problems are notoriously sensitive to outliers. As such, various robust loss functions have been proposed to reduce the sensitivity to outliers. Examples of loss functions include pseudo-Huber, Cauchy, and Geman-McClure. Recently, these loss functions have been generalized into a single loss function that enables the best loss function to be found adaptively based on the distribution of the residuals. However, even with the generalized robust loss function, most nonminimal solvers can only be solved locally given a prior state estimate due to the nonconvexity of the problem. The first contribution of this paper is to combine graduated nonconvexity (GNC) with the generalized robust loss function to solve least-squares problems without a prior state estimate and without the need to specify a loss function. Moreover, existing loss functions, including the generalized loss function, are based on Gaussian-like distribution. However, residuals are often defined as the squared norm of a multivariate error and distributed in a Chi-like fashion. The second contribution of this paper is to apply a norm-aware adaptive robust loss function within a GNC framework. The proposed approach enables a GNC formulation of a generalized loss function such that GNC can be readily applied to a wider family of loss functions. Furthermore, simulations and experiments demonstrate that the proposed method is more robust compared to non-GNC counterparts, and yields faster convergence times compared to other GNC formulations.
Submitted: May 11, 2023