Paper ID: 2305.07340

MedGPTEval: A Dataset and Benchmark to Evaluate Responses of Large Language Models in Medicine

Jie Xu, Lu Lu, Sen Yang, Bilin Liang, Xinwei Peng, Jiali Pang, Jinru Ding, Xiaoming Shi, Lingrui Yang, Huan Song, Kang Li, Xin Sun, Shaoting Zhang

METHODS: First, a set of evaluation criteria is designed based on a comprehensive literature review. Second, existing candidate criteria are optimized for using a Delphi method by five experts in medicine and engineering. Third, three clinical experts design a set of medical datasets to interact with LLMs. Finally, benchmarking experiments are conducted on the datasets. The responses generated by chatbots based on LLMs are recorded for blind evaluations by five licensed medical experts. RESULTS: The obtained evaluation criteria cover medical professional capabilities, social comprehensive capabilities, contextual capabilities, and computational robustness, with sixteen detailed indicators. The medical datasets include twenty-seven medical dialogues and seven case reports in Chinese. Three chatbots are evaluated, ChatGPT by OpenAI, ERNIE Bot by Baidu Inc., and Doctor PuJiang (Dr. PJ) by Shanghai Artificial Intelligence Laboratory. Experimental results show that Dr. PJ outperforms ChatGPT and ERNIE Bot in both multiple-turn medical dialogue and case report scenarios.

Submitted: May 12, 2023