Paper ID: 2305.07631
Vision and Control for Grasping Clear Plastic Bags
Joohwan Seo, Jackson Wagner, Anuj Raicura, Jake Kim
We develop two novel vision methods for planning effective grasps for clear plastic bags, as well as a control method to enable a Sawyer arm with a parallel gripper to execute the grasps. The first vision method is based on classical image processing and heuristics (e.g., Canny edge detection) to select a grasp target and angle. The second uses a deep-learning model trained on a human-labeled data set to mimic human grasp decisions. A clustering algorithm is used to de-noise the outputs of each vision method. Subsequently, a workspace PD control method is used to execute each grasp. Of the two vision methods, we find the deep-learning based method to be more effective.
Submitted: May 12, 2023