Paper ID: 2305.08872
AMULET: Adaptive Matrix-Multiplication-Like Tasks
Junyoung Kim, Kenneth Ross, Eric Sedlar, Lukas Stadler
Many useful tasks in data science and machine learning applications can be written as simple variations of matrix multiplication. However, users have difficulty performing such tasks as existing matrix/vector libraries support only a limited class of computations hand-tuned for each unique hardware platform. Users can alternatively write the task as a simple nested loop but current compilers are not sophisticated enough to generate fast code for the task written in this way. To address these issues, we extend an open-source compiler to recognize and optimize these matrix multiplication-like tasks. Our framework, called Amulet, uses both database-style and compiler optimization techniques to generate fast code tailored to its execution environment. We show through experiments that Amulet achieves speedups on a variety of matrix multiplication-like tasks compared to existing compilers. For large matrices Amulet typically performs within 15% of hand-tuned matrix multiplication libraries, while handling a much broader class of computations.
Submitted: May 12, 2023