Paper ID: 2305.10771
Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph
Chenguang Du, Kaichun Yao, Hengshu Zhu, Deqing Wang, Fuzhen Zhuang, Hui Xiong
Recent years have witnessed the rapid development of heterogeneous graph neural networks (HGNNs) in information retrieval (IR) applications. Many existing HGNNs design a variety of tailor-made graph convolutions to capture structural and semantic information in heterogeneous graphs. However, existing HGNNs usually represent each node as a single vector in the multi-layer graph convolution calculation, which makes the high-level graph convolution layer fail to distinguish information from different relations and different orders, resulting in the information loss in the message passing. %insufficient mining of information. To this end, we propose a novel heterogeneous graph neural network with sequential node representation, namely Seq-HGNN. To avoid the information loss caused by the single vector node representation, we first design a sequential node representation learning mechanism to represent each node as a sequence of meta-path representations during the node message passing. Then we propose a heterogeneous representation fusion module, empowering Seq-HGNN to identify important meta-paths and aggregate their representations into a compact one. We conduct extensive experiments on four widely used datasets from Heterogeneous Graph Benchmark (HGB) and Open Graph Benchmark (OGB). Experimental results show that our proposed method outperforms state-of-the-art baselines in both accuracy and efficiency. The source code is available at https://github.com/nobrowning/SEQ_HGNN.
Submitted: May 18, 2023