Paper ID: 2305.10788
Whisper-KDQ: A Lightweight Whisper via Guided Knowledge Distillation and Quantization for Efficient ASR
Hang Shao, Wei Wang, Bei Liu, Xun Gong, Haoyu Wang, Yanmin Qian
Due to the rapid development of computing hardware resources and the dramatic growth of data, pre-trained models in speech recognition, such as Whisper, have significantly improved the performance of speech recognition tasks. However, these models usually have a high computational overhead, making it difficult to execute effectively on resource-constrained devices. To speed up inference and reduce model size while maintaining performance, we propose a novel guided knowledge distillation and quantization for large pre-trained model Whisper. The student model selects distillation and quantization layers based on quantization loss and distillation loss, respectively. We compressed $\text{Whisper}_\text{small}$ to $\text{Whisper}_\text{base}$ and $\text{Whisper}_\text{tiny}$ levels, making $\text{Whisper}_\text{small}$ 5.18x/10.48x smaller, respectively. Moreover, compared to the original $\text{Whisper}_\text{base}$ and $\text{Whisper}_\text{tiny}$, there is also a relative character error rate~(CER) reduction of 11.3% and 14.0% for the new compressed model respectively.
Submitted: May 18, 2023