Paper ID: 2305.11084
Preference or Intent? Double Disentangled Collaborative Filtering
Chao Wang, Hengshu Zhu, Dazhong Shen, Wei wu, Hui Xiong
People usually have different intents for choosing items, while their preferences under the same intent may also different. In traditional collaborative filtering approaches, both intent and preference factors are usually entangled in the modeling process, which significantly limits the robustness and interpretability of recommendation performances. For example, the low-rating items are always treated as negative feedback while they actually could provide positive information about user intent. To this end, in this paper, we propose a two-fold representation learning approach, namely Double Disentangled Collaborative Filtering (DDCF), for personalized recommendations. The first-level disentanglement is for separating the influence factors of intent and preference, while the second-level disentanglement is performed to build independent sparse preference representations under individual intent with limited computational complexity. Specifically, we employ two variational autoencoder networks, intent recognition network and preference decomposition network, to learn the intent and preference factors, respectively. In this way, the low-rating items will be treated as positive samples for modeling intents while the negative samples for modeling preferences. Finally, extensive experiments on three real-world datasets and four evaluation metrics clearly validate the effectiveness and the interpretability of DDCF.
Submitted: May 18, 2023