Paper ID: 2305.11165
The noise level in linear regression with dependent data
Ingvar Ziemann, Stephen Tu, George J. Pappas, Nikolai Matni
We derive upper bounds for random design linear regression with dependent ($\beta$-mixing) data absent any realizability assumptions. In contrast to the strictly realizable martingale noise regime, no sharp instance-optimal non-asymptotics are available in the literature. Up to constant factors, our analysis correctly recovers the variance term predicted by the Central Limit Theorem -- the noise level of the problem -- and thus exhibits graceful degradation as we introduce misspecification. Past a burn-in, our result is sharp in the moderate deviations regime, and in particular does not inflate the leading order term by mixing time factors.
Submitted: May 18, 2023